Quantum computing
A quantum computer is a computer that exploits quantum
mechanical phenomena. At small scales, physical matter exhibits
properties of both particles and waves, and quantum computing leverages
this behavior using specialized hardware. Classical physics cannot
explain the operation of these quantum devices, and a scalable quantum
computer could perform some calculations exponentially faster than any
modern classical
computer. In particular, a large-scale quantum
computer could break widely-used encryption schemes and aid physicists
in performing physical simulations; however, the current state of the
art is still largely experimental and impractical.
.jpg)
The basic unit of information in quantum computing is the qubit, similar
to the bit in traditional digital electronics. Unlike a classical bit, a
qubit can exist in a superposition of its two basis
states, which
loosely means that it is in both states simultaneously. When measuring a
qubit, the result is a probabilistic output of a classical bit. If a
quantum computer manipulates the qubit in a particular way, wave
interference effects can amplify the desired measurement results. The
design of quantum algorithms involves creating procedures that allow a
quantum computer to perform calculations efficiently.
Physically engineering high-quality qubits has proven challenging. If a physical qubit is not sufficiently isolated from its environment, it suffers from quantum decoherence, introducing noise into calculations. National governments have invested heavily in experimental research that aims to develop scalable qubits with longer coherence times and lower error rates. Two of the most promising technologies are superconductors (which isolate an electrical current by eliminating electrical resistance) and ion traps (which confine a single atomic particle using electromagnetic fields).
Any computational problem that can be solved by a classical computer can also be solved by a quantum computer. Conversely, any problem that can be solved by a quantum computer can also be solved by a classical computer, at least in principle given enough time. In other words, quantum computers obey the Church-Turing thesis. This means that while quantum computers provide no additional advantages over classical computers in terms of computability, quantum algorithms for certain problems have significantly lower time complexities than corresponding known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of time—a feat known as “quantum supremacy.” The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory.
History
For many years, the fields of quantum mechanics and computer science formed distinct academic communities. Modern quantum theory developed in the 1920s to explain the wave-particle duality observed at atomic scales, and digital computers emerged in the following decades to replace human computers for tedious calculations. Both disciplines had practical applications during World War II; computers played a major role in wartime cryptography, and quantum physics was essential for the nuclear physics used in the Manhattan Project.
As physicists applied quantum mechanical models to computational problems and swapped digital bits for qubits, the fields of quantum mechanics and computer science began to converge. In 1980, Paul Benioff introduced the quantum Turing machine, which uses quantum theory to describe a simplified computer. When digital computers became faster, physicists faced an exponential increase in overhead when simulating quantum dynamics, prompting Yuri Manin and Richard Feynman to independently suggest that hardware based on quantum phenomena might be more efficient for computer simulation. In a 1984 paper, Charles Bennett and Gilles Brassard applied quantum theory to cryptography protocols and demonstrated that quantum key distribution could enhance information security.
Quantum algorithms then emerged for solving oracle problems, such as Deutsch's algorithm in 1985, the Bernstein-Vazirani algorithm in 1993, and Simon's algorithm in 1994. These algorithms did not solve practical problems, but demonstrated mathematically that one could gain more information by querying a black box in superposition, sometimes referred to as quantum parallelism. Peter Shor built on these results with his 1994 algorithms for breaking the widely-used RSA and Diffie-Hellman encryption protocols, which drew significant attention to the field of quantum computing. In 1996, Grover's algorithm established a quantum speedup for the widely-applicable unstructured search problem. The same year, Seth Lloyd proved that quantum computers could simulate quantum systems without the exponential overhead present in classical simulations, validating Feynman's 1982 conjecture.
The threshold theorem shows how increasing the number of qubits can mitigate errors, yet fully fault-tolerant quantum computing remains “a rather distant dream”. According to some researchers, noisy intermediate-scale quantum (NISQ) machines may have specialized uses in the near future, but noise in quantum gates limits their reliability. In recent years, investment in quantum computing research has increased in the public and private sectors. As one consulting firm summarized,
... investment dollars are pouring in, and quantum-computing start-ups are proliferating. ... While quantum computing promises to help businesses solve problems that are beyond the reach and speed of conventional high-performance computers, use cases are largely experimental and hypothetical at this early stage.
Algorithms
Progress in finding quantum algorithms typically focuses on this quantum circuit model, though exceptions like the quantum adiabatic algorithm exist. Quantum algorithms can be roughly categorized by the type of speedup achieved over corresponding classical algorithms.
Quantum algorithms that offer more than a polynomial speedup over the best-known classical algorithm include Shor's algorithm for factoring and the related quantum algorithms for computing discrete logarithms, solving Pell's equation, and more generally solving the hidden subgroup problem for abelian finite groups. These algorithms depend on the primitive of the quantum Fourier transform. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, although this is considered unlikely. Certain oracle problems like Simon's problem and the Bernstein–Vazirani problem do give provable speedups, though this is in the quantum query model, which is a restricted model where lower bounds are much easier to prove and doesn't necessarily translate to speedups for practical problems.
Other problems, including the simulation of quantum physical processes from chemistry and solid-state physics, the approximation of certain Jones polynomials, and the quantum algorithm for linear systems of equations have quantum algorithms appearing to give super-polynomial speedups and are BQP-complete. Because these problems are BQP-complete, an equally fast classical algorithm for them would imply that no quantum algorithm gives a super-polynomial speedup, which is believed to be unlikely.
Some quantum algorithms, like Grover's algorithm and amplitude amplification, give polynomial speedups over corresponding classical algorithms. Though these algorithms give comparably modest quadratic speedup, they are widely applicable and thus give speedups for a wide range of problems. Many examples of provable quantum speedups for query problems are related to Grover's algorithm, including Brassard, Høyer, and Tapp's algorithm for finding collisions in two-to-one functions, which uses Grover's algorithm, and Farhi, Goldstone, and Gutmann's algorithm for evaluating NAND trees, which is a variant of the search problem.
Engineering
Challenges
There are a number of technical challenges in building a large-scale quantum computer. Physicist David DiVincenzo has listed these requirements for a practical quantum computer:
- Physically scalable to increase the number of qubits
- Qubits that can be initialized to arbitrary values
- Quantum gates that are faster than decoherence time
- Universal gate set
- Qubits that can be read easily
Sourcing parts for quantum computers is also very difficult. Superconducting quantum computers, like those constructed by Google and IBM, need helium-3, a nuclear research byproduct, and special superconducting cables made only by the Japanese company Coax Co.
The control of multi-qubit systems requires the generation and coordination of a large number of electrical signals with tight and deterministic timing resolution. This has led to the development of quantum controllers which enable interfacing with the qubits. Scaling these systems to support a growing number of qubits is an additional challenge.
Decoherence
One of the greatest challenges involved with constructing quantum computers is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time T2 (for NMR and MRI technology, also called the dephasing time), typically range between nanoseconds and seconds at low temperature. Currently, some quantum computers require their qubits to be cooled to 20 millikelvin (usually using a dilution refrigerator) in order to prevent significant decoherence. A 2020 study argues that ionizing radiation such as cosmic rays can nevertheless cause certain systems to decohere within milliseconds.
Quantum supremacy
Quantum supremacy is a term coined by John Preskill referring to the engineering feat of demonstrating that a programmable quantum device can solve a problem beyond the capabilities of state-of-the-art classical computers. The problem need not be useful, so some view the quantum supremacy test only as a potential future benchmark.
Skepticism
Some researchers have expressed skepticism that scalable quantum computers could ever be built, typically because of the issue of maintaining coherence at large scales, but also for other reasons.
Theory
Computability
Any computational problem solvable by a classical computer is also solvable by a quantum computer. Intuitively, this is because it is believed that all physical phenomena, including the operation of classical computers, can be described using quantum mechanics, which underlies the operation of quantum computers.
Conversely, any problem solvable by a quantum computer is also solvable by a classical computer. It is possible to simulate both quantum and classical computers manually with just some paper and a pen, if given enough time. More formally, any quantum computer can be simulated by a Turing machine. In other words, quantum computers provide no additional power over classical computers in terms of computability. This means that quantum computers cannot solve undecidable problems like the halting problem and the existence of quantum computers does not disprove the Church-Turing thesis.
Complexity
While quantum computers cannot solve any problems that classical computers cannot already solve, it is suspected that they can solve certain problems faster than classical computers. For instance, it is known that quantum computers can efficiently factor integers, while this is not believed to be the case for classical computers.